Académicos Jornada Completa

Ingeniería de Procesos

Luis Henríquez

Modelación y simulación de procesos que involucran transporte turbulento en medios porosos. Sistemas multifásicos. Conversión de energía, Computación paralela

Doctor en Ciencias de la Ingeniería c/m Ingeniería de Procesos, Universidad de Santiago de Chile.
Magíster en Ciencias de la Ingeniería c/m Ingeniería de Procesos, Universidad de Santiago de Chile.
Ingeniero Civil Químico, Universidad de Santiago de Chile.

Conversión de Energía
Transporte Multifásico
Termoelectricidad.

Fenómenos de Transporte
Métodos de Cálculo en Ingeniería de Procesos
Fenómenos de Transporte Avanzado
Soluciones Numéricas en Fenómenos de Transporte
Termodinámica del No-Equilibrio
Tópicos Especiales en Simulación Computacional

  • 2018–2021 FONDECYT: 1180028, Investigador, Experimental Analysis and Modeling of the Drying of Solids using Solar Energy in a Continuous Multistage Rectangular Base Spouted Bed.
  • 2016–2018 Innova Chile – CORFO: 16COTE-66295, Director Alterno, Investigador, Reactor Continuo para Cortadura de Ioduro, Fusión Autógena y Separación de Iodo.
  • 2016–2017 DICYT: 091611DG, Investigador, Estudio de la Combustión de COVs en Quemadores de Medios Porosos Inertes bajo Régimen de Flujo Turbulento con Aplicaciones en Termogeneración de Electricidad.
  • 2015–2016 Innova Chile – CORFO: 15IPPID-45854, Investigador, Sistema de Recuperación de Solventes a partir de las Emisiones de la Industria Flexográfica Mediante la Tecnología PSA.
  • 2013–2015 Innova Chile – CORFO: 13IDL218643, Investigador, Diseño y Desarrollo de un Incinerador de Compuestos Orgánicos Volátiles en el Aire de Baja Concentración.
  • 2010–2013 FONDECYT Iniciación: 11100401, Investigador Responsable, Theoretical and Experimental Study of Power Generation Through Combustion of Low Calorific Gas Mixtures in Porous Media.
  • 2009–2010 FONDECYT: 1090062, Ayudante Investigación, Continuous Operational Plant Optimization Using Grey-Box Neural Models.
  • 2007–2009 DICYT: 0611CM, Ayudante Investigación, Sistemas de Optimización y Control en Tiempo Real Usando Modelos Híbridos.
  • 2003–2010 FONDECYT: 1010354, 1050241, 1090550, Ayudante Investigación, Estudios Teórico-Experimentales de la Combustión Superadiabática en Medios Porosos Inertes.
  •  A. Reyes, L. Henríquez-Vargas, J. Vásquez, N. Pailahueque, and G. Aguilar. Analysis of a laboratory scale thermal energy accumulator using two-phases heterogeneous paraffin wax-water mixtures. Energy Conversion and Management, 145:41–51, 2020.
  • A. Reyes, N. Pailahueque, L. Henríquez-Vargas, J. Vásquez, and F. Sepúlveda. Analysis of a multistage solar thermal energy accumulator. Renewable Energy, 136:621–631, 2019.
  • P. Donoso-García and L. Henríquez-Vargas. Numerical study of a waste heat recovery thermogenerator system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41:356, 2019.
  • V. Bubnovich, P. S. Martin, L. Henríquez, and M. de Lemos. Filtration gas combustion in a porous ceramic annular burner for thermoelectric power conversion. Heat Transfer Engineering, pages 1–15, 2018.
  • A. Reyes, L. Henríquez-Vargas, J. Rivera, and F. Sepúlveda. Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material. Renewable Energy, 101:225–235, 2017.
  • L. Henríquez-Vargas, E. Villaroel, J. Gutierrez, and P. Donoso-García. Implementation of a parallel ADI algorithm on a finite volume GPU-based elementary porous media flow computation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10):3965–3979, August 2017.
  • S. Contreras, L. Henríquez-Vargas, and P. I. Álvarez. Arsenic Transport and Adsorption Modeling in Columns Using a Copper Nanoparticles Composite. Journal of Water Process Engineering, 19:212–219, 2017.
  • V. Bubnovich, P. S. Martín, L. Henríquez-Vargas, N. Orlovskaya, and H. A. González-Rojas. Electric Power Generation from Combustion in Porous Media. Journal of Porous Media, 19(10):841–851, 2016.
  • V. Bubnovich and L. Henríquez-Vargas. Analysis of Combustibility Limits for Lean Methane/Air Mixtures in a Cylindrical Annular Packed Bed. International Journal of Theoretical and Applied Mechanics, 1:38–46, 2016.
  • A. Reyes, L. Henríquez-Vargas, R. Aravena, and F. Sepúlveda. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM. Energy Conversion and Management, 105:189–196, 2015.
  • L. Henríquez-Vargas, M. Valeria, and V. Bubnovich. Numerical study of lean combustibility limits extension in a reciprocal flow porous media burner for ethanol/air mixtures. International Journal of Heat and Mass Transfer, 89:1155–1163, 2015.
  • [12] L. Henríquez-Vargas, J. Loyola, D. Sanhueza, and P. Donoso. Numerical Study of Reciprocal Flow Porous Media Burners Coupled with Thermoelectric Generation. Journal of Porous Media, 18(3):257–267, 2015.
  • P. Donoso-García and L. Henríquez-Vargas. Numerical study of turbulent porous media combustion coupled with thermoelectric generation in a recuperative reactor. Energy, 93:1189–1198, 2015.
  • L. Henríquez-Vargas, A. Cabezas Garrido, and P. Donoso García. Multiphysics coupling in COMSOL for modeling of thermogeneration of electricity through porous media combustion. Afro Asian Journal of Science and Technology, 1(2):109–125, 2014.
  • L. Henríquez-Vargas, M. Maiza, and P. Donoso. Numerical study of thermoelectric generation within a continuous flow porous media burner. Journal of Porous Media, 16(10):933–944, 2013.
  • L. Henríquez-Vargas and P. Donoso. Numerical study of thermoelectric generation within a reciprocal flow porous media burner. Journal of Mechanics Engineering and Automation, 3(6):367–377, 2013.
  • L. Henríquez-Vargas, V. Bubnovich, F. Cubillos, and P. Donoso. Modeling, simulation and control for a continuous porous media burner. Journal of Porous Media, 16(2):155–165, 2013.
  • V. Bubnovich, N. Orlovskaya, L. Henríquez-Vargas, and F. Ibacache. Experimental Thermoelectric Generation in a Porous Media Burner. International Journal of Chemical Engineering and Applications, 4(5):301–304, 2013.
  • R. Salinas, U. Raff, and L. Henríquez-Vargas. Digital Temperature Tracking in Porous Media Burners. Measurements and Control, 45(3):90–93, 2012.
  • V. Bubnovich, M. Maiza, and L. Henríquez-Vargas. Analysis of thermal energy conversion into electric power inside a porous media burner. Theoretical Foundations of Chemical Engineering, 46(6):666–672, 2012.
  • V. Bubnovich, M. Maiza, and L. Henríquez-Vargas. Modeling of thermoelectric power generation by porous media burner. Chemical Engineering Transactions, 25:141–146, 2011.
  • V. Bubnovich, L. Henríquez-Vargas, C. Díaz, and M. Maiza. Diameter of alumina balls effect on stabilization operation region for a reciprocal flow burner. International Journal of Heat and Mass Transfer, 54:2026–2033.
  • L. Henríquez-Vargas, V. Bubnovich, and F. Cubillos. Dynamic optimization of porous media combustor through flame positioning. Chemical Engineering Transactions, 21:961–966, 2010.
  • V. Bubnovich, M. Toledo, L. Henríquez-Vargas, C. Rosas, and J. Romero. Flame stabilization between two beds of alumina balls in a porous burner. Applied Thermal Engineering, 30:92–95, 2010.
  • V. Bubnovich, L. Henríquez-Vargas, C. Díaz, and E. Ávila. Stabilization operation region and operational variables effect on a reciprocal flow burner. WSEAS Transactions on Heat and Mass Transfer, 5:1–10, 2010.
  • V. Bubnovich, L. Henríquez-Vargas, C. Díaz, and E. Ávila. Stabilization operation region for a reciprocal flow burner. In Recent Advances in Applied and Theoretical Mechanics, pages 114–119. WSEAS, 2009.
  • V. Bubnovich, L. Henríquez, and N. Gnesdilov. Numerical study of the effects of the diameter of alumina balls on flame stabilization in a porous media burner. Numerical Heat Transfer: part A, 52:275–295, 2007.
  • Donoso-García and L. Henríquez-Vargas, P. Álvarez y R. Blasco, “Modelación de la Combustión Turbulenta en Medios Porosos en un Reactor de Flujo Reverso”. XXI Congreso Chileno de Ingeniería Química, 2019
  • Donoso-García, L. Henríquez-Vargas, P. Álvarez y R. Blasco, “Termogeneración de Electricidad a Partir de la Recuperación de Calor Residual”. XX Congreso Chileno de Ingeniería Química, 2017
  • Donoso-García, L. Henríquez-Vargas, J. Salazar and P. Álvarez, “Waste Heat Recovery System Through Thermoelectric Generation in Solids”. 10th World Congress of Chemical Engineering, Barcelona 2017
  • J. Salazar, F. Cubillos, L. Reyes-Bozo, A. Godoy P. Donoso-García and G. Angelico, “Economic and operational optimization for semi-autogenous grinding systems, SAG”. 10th World Congress of Chemical Engineering, Barcelona 2017