Sr. Henríquez
Correo:

 

Teléfono:
227181804

Luis Henríquez Vargas

Modelación y simulación de procesos que involucran transporte turbulento en medios porosos. Sistemas multifásicos. Conversión de energía, Computación paralela
  • Doctor en Ciencias de la Ingeniería c/m Ingeniería de Procesos, Universidad de Santiago de Chile.
  • Magíster en Ciencias de la Ingeniería c/m Ingeniería de Procesos, Universidad de Santiago de Chile.
  • Ingeniero Civil Químico, Universidad de Santiago de Chile.
  • Conversión de Energía
  • Transporte Multifásico
  • Termoelectricidad.
  • Fenómenos de Transporte
  • Métodos de Cálculo en Ingeniería de Procesos
  • Fenómenos de Transporte Avanzado
  • Soluciones Numéricas en Fenómenos de Transporte
  • Termodinámica del No-Equilibrio
  • Tópicos Especiales en Simulación Computacional
  • 2018–2021 FONDECYT: 1180028, Investigador, Experimental Analysis and Modeling of the Drying of Solids using Solar Energy in a Continuous Multistage Rectangular Base Spouted Bed.
  • 2016–2018 Innova Chile – CORFO: 16COTE-66295, Director Alterno, Investigador, Reactor Continuo para Cortadura de Ioduro, Fusión Autógena y Separación de Iodo.
  • 2016–2017 DICYT: 091611DG, Investigador, Estudio de la Combustión de COVs en Quemadores de Medios Porosos Inertes bajo Régimen de Flujo Turbulento con Aplicaciones en Termogeneración de Electricidad.
  • 2015–2016 Innova Chile – CORFO: 15IPPID-45854, Investigador, Sistema de Recuperación de Solventes a partir de las Emisiones de la Industria Flexográfica Mediante la Tecnología PSA.
  • 2013–2015 Innova Chile – CORFO: 13IDL218643, Investigador, Diseño y Desarrollo de un Incinerador de Compuestos Orgánicos Volátiles en el Aire de Baja Concentración.
  • 2010–2013 FONDECYT Iniciación: 11100401, Investigador Responsable, Theoretical and Experimental Study of Power Generation Through Combustion of Low Calorific Gas Mixtures in Porous Media.
  • 2009–2010 FONDECYT: 1090062, Ayudante Investigación, Continuous Operational Plant Optimization Using Grey-Box Neural Models.
  • 2007–2009 DICYT: 0611CM, Ayudante Investigación, Sistemas de Optimización y Control en Tiempo Real Usando Modelos Híbridos.
  • 2003–2010 FONDECYT: 1010354, 1050241, 1090550, Ayudante Investigación, Estudios Teórico-Experimentales de la Combustión Superadiabática en Medios Porosos Inertes.
  •  A. Reyes, L. Henríquez-Vargas, J. Vásquez, N. Pailahueque, and G. Aguilar. Analysis of a laboratory scale thermal energy accumulator using two-phases heterogeneous paraffin wax-water mixtures. Energy Conversion and Management, 145:41–51, 2020.
  • A. Reyes, N. Pailahueque, L. Henríquez-Vargas, J. Vásquez, and F. Sepúlveda. Analysis of a multistage solar thermal energy accumulator. Renewable Energy, 136:621–631, 2019.
  • P. Donoso-García and L. Henríquez-Vargas. Numerical study of a waste heat recovery thermogenerator system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41:356, 2019.
  • V. Bubnovich, P. S. Martin, L. Henríquez, and M. de Lemos. Filtration gas combustion in a porous ceramic annular burner for thermoelectric power conversion. Heat Transfer Engineering, pages 1–15, 2018.
  • A. Reyes, L. Henríquez-Vargas, J. Rivera, and F. Sepúlveda. Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material. Renewable Energy, 101:225–235, 2017.
  • L. Henríquez-Vargas, E. Villaroel, J. Gutierrez, and P. Donoso-García. Implementation of a parallel ADI algorithm on a finite volume GPU-based elementary porous media flow computation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10):3965–3979, August 2017.
  • S. Contreras, L. Henríquez-Vargas, and P. I. Álvarez. Arsenic Transport and Adsorption Modeling in Columns Using a Copper Nanoparticles Composite. Journal of Water Process Engineering, 19:212–219, 2017.
  • V. Bubnovich, P. S. Martín, L. Henríquez-Vargas, N. Orlovskaya, and H. A. González-Rojas. Electric Power Generation from Combustion in Porous Media. Journal of Porous Media, 19(10):841–851, 2016.
  • V. Bubnovich and L. Henríquez-Vargas. Analysis of Combustibility Limits for Lean Methane/Air Mixtures in a Cylindrical Annular Packed Bed. International Journal of Theoretical and Applied Mechanics, 1:38–46, 2016.
  • A. Reyes, L. Henríquez-Vargas, R. Aravena, and F. Sepúlveda. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM. Energy Conversion and Management, 105:189–196, 2015.
  • L. Henríquez-Vargas, M. Valeria, and V. Bubnovich. Numerical study of lean combustibility limits extension in a reciprocal flow porous media burner for ethanol/air mixtures. International Journal of Heat and Mass Transfer, 89:1155–1163, 2015.
  • [12] L. Henríquez-Vargas, J. Loyola, D. Sanhueza, and P. Donoso. Numerical Study of Reciprocal Flow Porous Media Burners Coupled with Thermoelectric Generation. Journal of Porous Media, 18(3):257–267, 2015.
  • P. Donoso-García and L. Henríquez-Vargas. Numerical study of turbulent porous media combustion coupled with thermoelectric generation in a recuperative reactor. Energy, 93:1189–1198, 2015.
  • L. Henríquez-Vargas, A. Cabezas Garrido, and P. Donoso García. Multiphysics coupling in COMSOL for modeling of thermogeneration of electricity through porous media combustion. Afro Asian Journal of Science and Technology, 1(2):109–125, 2014.
  • L. Henríquez-Vargas, M. Maiza, and P. Donoso. Numerical study of thermoelectric generation within a continuous flow porous media burner. Journal of Porous Media, 16(10):933–944, 2013.
  • L. Henríquez-Vargas and P. Donoso. Numerical study of thermoelectric generation within a reciprocal flow porous media burner. Journal of Mechanics Engineering and Automation, 3(6):367–377, 2013.
  • L. Henríquez-Vargas, V. Bubnovich, F. Cubillos, and P. Donoso. Modeling, simulation and control for a continuous porous media burner. Journal of Porous Media, 16(2):155–165, 2013.
  • V. Bubnovich, N. Orlovskaya, L. Henríquez-Vargas, and F. Ibacache. Experimental Thermoelectric Generation in a Porous Media Burner. International Journal of Chemical Engineering and Applications, 4(5):301–304, 2013.
  • R. Salinas, U. Raff, and L. Henríquez-Vargas. Digital Temperature Tracking in Porous Media Burners. Measurements and Control, 45(3):90–93, 2012.
  • V. Bubnovich, M. Maiza, and L. Henríquez-Vargas. Analysis of thermal energy conversion into electric power inside a porous media burner. Theoretical Foundations of Chemical Engineering, 46(6):666–672, 2012.
  • V. Bubnovich, M. Maiza, and L. Henríquez-Vargas. Modeling of thermoelectric power generation by porous media burner. Chemical Engineering Transactions, 25:141–146, 2011.
  • V. Bubnovich, L. Henríquez-Vargas, C. Díaz, and M. Maiza. Diameter of alumina balls effect on stabilization operation region for a reciprocal flow burner. International Journal of Heat and Mass Transfer, 54:2026–2033.
  • L. Henríquez-Vargas, V. Bubnovich, and F. Cubillos. Dynamic optimization of porous media combustor through flame positioning. Chemical Engineering Transactions, 21:961–966, 2010.
  • V. Bubnovich, M. Toledo, L. Henríquez-Vargas, C. Rosas, and J. Romero. Flame stabilization between two beds of alumina balls in a porous burner. Applied Thermal Engineering, 30:92–95, 2010.
  • V. Bubnovich, L. Henríquez-Vargas, C. Díaz, and E. Ávila. Stabilization operation region and operational variables effect on a reciprocal flow burner. WSEAS Transactions on Heat and Mass Transfer, 5:1–10, 2010.
  • V. Bubnovich, L. Henríquez-Vargas, C. Díaz, and E. Ávila. Stabilization operation region for a reciprocal flow burner. In Recent Advances in Applied and Theoretical Mechanics, pages 114–119. WSEAS, 2009.
  • V. Bubnovich, L. Henríquez, and N. Gnesdilov. Numerical study of the effects of the diameter of alumina balls on flame stabilization in a porous media burner. Numerical Heat Transfer: part A, 52:275–295, 2007.